

Research Journal of Pharmaceutical, Biological and Chemical Sciences

A Theoretical Study on the Vibrational and UV/VIS Spectra for the some 1, 3, 4-oxadiazole Derivatives by Using DFT Approach.

Assan Faeez, and Shatha Fadil Al-Saidi*

Department of Chemistry, College of Science, Al-Nahrain University, Al-Jadria, Baghdad, Iraq.

ABSTRACT

1, 3, 4-oxadiazole and its derivatives are attractive molecules due to their biological and pharmaceutical properties. This work aim to obtain the theoretical structure, the vibrational spectra, UV-Vis spectra for the 1, 3, 4-oxadiazole, and its derivatives (1,3,4-oxadiazole-2-amine, 2,5-diamine-1,3,4-oxadiazole, and 5-chloro-1,3,4-oxadiazole-2-amine) Since there are no available experimental, and theoretical data in literature for these derivatives. The quantum chemical calculations of the density functional theory (DFT) using Becke's three-parameter hybrid level with the Lee-Yang-Parr correlation functional B3LYP method plus the basis set 6-311G++(2d,2p). Substitution of one or two electron - donating groups (-NH₂) in 2or 5 positions on the oxadiazole ring destabilizes the HOMO and LUMO levels with a decrease in the energy gap resulting in a red shifting in the absorption spectrum (λ max). The first (a), and second (b) absorption peaks in the electronic spectra and IR vibration frequencies for both C=N and C-H bonds of the oxadiazole derivatives are red-shifted in the presence of the –NH₂ group. The molecular electrostatic potential maps for all these molecules show a negative potential over the electronegative atoms (nitrogen ring atoms), and a positive potential over the carbon and hydrogen atoms.

Keywords: DFT method; 1, 3, 4-oxadiazole-2-amine; 2,5-diamine-1, 3, 4-oxadiazole; 5-chloro-1, 3, 4-oxadiazole-2-amine; Vibrational analysis; UV/Vis Spectra.

*Corresponding author

INTRODUCTION

1, 3, 4-oxadiazole is thermally stable molecule. Oxadiazole is a very weak base due to the inductive effect of the three heteroatom [1]. The 1, 3, 4-oxadiazole undergoes different reactions including electrophilic and nucleophilic substitution thermal, and photochemical [2, 3]. This compound and its derivatives attracted the attention of researchers because of its biological and pharmaceutical properties [4 - 6]. It was first prepared in 1965 by Ainsworth employing thermolysis of ethyl formate formyl hydrazone at atmospheric pressure [7]. In 1972 Nygaard et al [8] determined the structure of 1, 3, 4-oxadiazole by a microwave studies. Since the equilibrium structure of 1, 3, 4-oxadiazole cannot be accurately determined by the microwave technique only. Therefore a quantum chemical calculations (with appropriate uncertainties) fitted with the moments of inertia, employed by Demaison et al [9] using the mixed estimation of the internal coordinates approach gives more accurate result. Their calculations were confirmed by the extrapolation technique.

The experimental and theoretical vibrational spectra (Infrared spectra) were investigated for this molecule [10-13]. El-azhary [11] theoretically studied the molecular structure and the harmonic vibrational spectra of this molecule employing the DFT, MP2, and HF methods with the same basis set /6-31G**. He concluded that the scaled calculated spectra by the DFT/6-31G^{**} method revealed good agreement results with experimental spectra than those calculated by the MP2/6-31G^{**} or HF/6-31G^{**} methods. Then Kwiatkowski et al [12] obtained a scaled ab initio calculations of vibrational frequencies based on both the DFT and MP2 methods with the standard 6-31G (d,p) basis set. Hegelund with coworker [13] studied the High-resolution of the IR spectra for the four fundamental bands of 1,3,4-oxadiazole in gaseous (ranging between 800 and 1600 cm⁻¹), plus the theoretical calculations of optimize geometry, and the complete set of anharmonic frequencies using DFT method. But Karimi [14] investigated factors affecting the stability as well as the structural properties for oxadiazole and thiadiazole isomers employing the DFT and Ab Initio B3LYP/6-311+G** level, plus the Nuclear Magnetic Resonance (NMR). They found that the relative stabilities of these molecules as follow1, 2, 3oxadiazole, 1, 2, 4-oxadiazole, 1, 2, 5-oxadiazole and 1, 3, 4-oxadiazole. Many studies demonstrated that the density functional theory DFT-B3LYP method together with the 6-31G* basis set or higher levels is able to give accurate results for the energies, molecular structures, and infrared vibrational frequencies [11, 12, 15, 16]. So in view of the excellent previous results obtained by the DFT-B3LYP method, and since there are no available experimental and theoretical data in literature for the 1, 3, 4-oxadiazole derivatives. Therefore the aim of this study is to obtain the theoretical structure, the vibrational spectra, UV-Vis spectra for the 1, 3, 4-oxadiazole OD, and its derivatives (1,3,4-oxadiazole-2-amine ODA, 2,5-diamine-1,3,4-oxadiazole ODDA, and 5-chloro-1,3,4oxadiazole-2-amine CODA).

COMPUTATIONAL DETAILS

The quantum chemical calculations of the DFT [17] using Becke's three-parameter hybrid level [18] with the Lee-Yang-Parr correlation functional B3LYP method [19, 20] plus the basis set 6-311G++(2d,2p) for the mentioned compounds were carried out using Gaussian 09 software [21]. The optimized geometrical parameters, harmonic vibrational frequencies, IR intensities, Raman activity, and the HOMO and LUMO energies were calculated. Furthermore the electronic absorption spectra, with its vertical excitation energies plus the oscillator strengths were computed with the time dependent density functional theory (TD-DFT) at B3LYP/6-311++G(2d,2p) level.

RESULTS AND DISCUSSION

Molecular geometry

The fully optimized geometric parameters of the molecules under study are presented in table 1, and figure 1.



Figure 1. The calculated molecular structure for the studied compound along with the atom numbering scheme.

Table 1. The optimized geometry data of OD, ODA, ODDA, and CODA molecules, plus the available theoretical and experimental data.

Structural parameter	Exp.(9)	Exp. (13)	other work(9)	other work (11)			1G++ (2d,2p) is work		
•		0)	kadiazole (O			ODA CODA OD			
				ength in (A ^e					
O ₁ -C ₂	1.354	1.357	1.356	1.360	1.359	1.357	1.362	1.371	
O ₁ -C ₅						1.374	1.371	1.371	
C ₂ =N ₃	1.285	1.284		1.283	1.284	1.294	1.293	1.284	
N ₄ =C ₅						1.278	1.276	1.284	
C ₂ -N ₆						1.365	1.363	1.372	
C ₂ -H ₆	1.074	1.075	1.075	1.079	1.075				
N ₃ -N ₄	1.406		1.401	1.405	1.405	1.406	1.409	1.419	
C₅-Cl							1.702		
C₅-H ₉						1.075			
N ₆ -H ₇						1.007	1.008	1.008	
N ₆ -H ₈						1.007	1.008	1.009	
				gle in degr	-				
C ₂ -O ₁ -C ₅	101.4	101.6	101.8	101.5	101.7	101.5	101.0	101.3	
O_1 - C_2 = N_3	113.8	113.3	113.2	113.4	113.3	113.5	113.4	113.5	
O ₁ -C ₂ -N ₆						117.7	117.5	116.9	
N ₃ =C ₂ -N ₆						128.7	128.9	129.5	
O ₁ -C ₂ -H ₆	118.1		118.2	118.0	118.2				
N ₃ =C ₂ -H ₆	128.2		128.6	128.6	128.6				
C ₂ =N ₃ -N ₄	105.6	105.8	105.9	105.8	105.9	105.4	105.7	105.8	
N ₃ -N ₄ =C ₅						106.6	105.9	105.8	
$O_1 - C_5 = N_4$						113.0	113.9	113.5	
O ₁ -C ₅ -Cl							117.3		
N ₄ =C ₅ -Cl							128.8		
$O_1 - C_5 - H_9$						117.8			
N ₄ =C ₅ -H ₉						129.2			
C ₂ -N ₆ -H ₇						113.5	113.5	112.4	
C ₂ -N ₆ -H ₈						115.7	115.9	114.8	
H ₇ -N ₆ -H ₈						114.1	114.2	112.9	
			Dihedral d	angle in deg					
$C_5 - O_1 - C_2 = N_3$					0.0	0.2	0.2	0.0	
$C_5 - O_1 - C_2 - N_6$						-176.6	-176.5	-176.6	
$C_5 - O_1 - C_2 - H_6$					180.0				
$C_2 - O_1 - C_5 = N_4$					0.0	0.1	0.2	0.0	
$C_2-O_1-C_5-H_7$					180.0				
C ₂ -O ₁ -C ₅ -Cl							-179.4		
$C_2 - O_1 - C_5 - N_9$								176.6	
$C_2-O_1-C_5-H_9$						-179.6			
$O_1 - C_2 = N_3 - N_4$					0.0	-0.4	-0.5	0.0	
$H_6-C_2=N_3-N_4$					180.0				
$N_6-C_2=N_3-N_4$						175.9	175.7	176.0	
$O_1 - C_2 - N_6 - H_7$						-167.0	-168.1	-168.7	
$O_1 - C_2 - N_6 - H_8$						-32.3	-33.0	-37.8	
N ₃ =C ₂ -N ₆ -H ₇						16.7	15.8	15.4	
$N_3 = C_2 - N_6 - H_8$						151.4	150.9	146.2	
$C_2 = N_3 - N_4 - C_5$					0.0	0.5	0.6	0.0	
$N_3 - N_4 - C_5 - H_9$						179.3			
N ₃ -N ₄ =C ₅ -Cl							179.1		
$N_3 - N_4 = C_5 - N_9$								-176.0	
$O_1 - C_5 - N_9 - H_{10}$								37.8	
$O_1 - C_5 - N_9 - H_{11}$								168.7	

January – February

RJPBCS

8(1)

Γ	$N_4 = C_5 - N_9 - H_{10}$				-146.2
Γ	$N_4 = C_5 - N_9 - H_{11}$				-15.4

The calculated molecular structure of the **OD** to C_{2v} point group symmetry is in good agreement with the previous experimental and theoretical results [9, 11, 13], table 1.

Both **ODA**, **CODA** molecules belongs to **C**₁, and the **ODDA** molecule to **C**_s point group.

The C–Cl bond length reveal a considerable decrease when substituted in the place of C–H, this was in **CODA** molecule. Also the results show that the electronegative substituent of the Cl on ring seen also in oxadiazole derivatives [22]. The results demonstrate that the C–Cl bond length is 1.702 °A trend to shorting the $C_5=N_4$ (1.276 °A) bonds which adjacent to the substituent, but the bond length of $C_2=N_3$ is longer (1.293 °A). The O_1-C_5 bond (1.371 °A) is longer than O_1-C_2 bond (1.362 °A).

In the **OD** molecule the bond angles around the C_2 atom ($O_1-C_2-H_6$, $O_1-C_2-N_3$ and $N_3-C_2-H_6$) are 118.2, 113.3, and 128.6 degree respectively where the total sum equal to 359.9 degree, and the total sum for the three angles around the center of the C_5 atom equal 359.9 degree. This indicating that the C_2 , and C_5 atoms related to sp^2 hybridization type. The same results are obtained for all the oxadiazole derivatives, table 1.

Vibrational analysis

The compute harmonic vibrational frequencies with the complete assignment for all molecules under study (**OD**, **ODA**, **ODDA**, and **CODA**) are reported in tables 2, 3, 4, 5 respectively.

The **OD** molecule is planar, which has 7 atoms with 15 normal modes of vibrations. The fundamental modes are distributed as: Γ vib = $6A_1 + 2A_2 + 2B_1 + 5B_2$. All these vibrations are active in both Infrared and Raman except the A₂ species which is active in Raman only. This work results show reasonable agreement when compared with experimental, and the theoretical scaling frequencies data of El-azhary [11], plus the anharmonic frequencies of Hegelund et al [13].

The **ODDA** molecule has 27 normal modes are distributed as $\Gamma_{vib} = 14A' + 13A''$. All these fundamental vibrations are active in both Infrared and Raman.

ODA, CODA molecules have a non-planar structure. Both molecules have 9 atoms with 21 normal modes of vibrations, belongs to one class of the C_1 symmetry A. Also all these fundamental vibrations are active in both Infrared and Raman.

C-H vibrations:

The data demonstrate that the CH symmetric and asymmetric stretching band values for **OD** were 3291, 3285 cm⁻¹ respectively which are coincidence with experimental results [11]. The CH stretching for **ODA** appears at 3290 cm⁻¹. The vibrations of C-H (symmetric and asymmetric) out-of-plane bending for **OD** molecule are evaluated at 872, and 841 cm⁻¹ consequently. But the frequency at 1239 cm⁻¹ can be assigned as C-H in-plane bending, which is agreed with experimental data. While in the **ODA** molecule the same vibration is 1253 cm⁻¹.

Ring vibrations:

The N-N stretching vibrations for all molecules are not pure (mixed with several other motions), and the higher value is belonged to **CODA** molecule.

The C=N symmetric and asymmetric stretching frequencies for **OD** molecule, are at 1558, and 1534 cm⁻¹ consequently, and increase in oxadiazole derivatives according to the following order **CODA**, **ODA**, and **ODDA**.

Table 2. Theoretical vibrational frequencies and the assignment of the OD molecule compare with other experimental and theoretical data.

No.	Sym.	Freq. (cm ⁻¹)	IR intensity (Km mol ⁻¹)	Raman activity (A ^{° 4} amu ⁻¹)	ab initio [13]	DFT 6- 31G** other work [11]	Exp.[11]	Assignment
ν_1	A1	3291	0.61	135.18	3150	3180	3169	⊡s CH
ν_2		1558	46.76	34.84	1527	1529	1534	⊠s C=N + βs CH
<i>v</i> ₃		1300	0.30	20.22	1275	1275	1272	βs CH + β ring (ring def.)
ν_4		1104	37.14	6.59	1085	1093	1092	βs CH + ⊠s COC
ν_5		974	4.17	4.96	948	952	951	S NN + S COC) (ring β
ν_{6}		946	35.73	0.07	926	923	920	βs CH +β ring (⊡s NN+⊡s COC)
ν_7	A ₂	841	0.00	0.17	825	823	825	as CHγ
ν_8		675	0.00	0.33	666	655	653	γas CH + γ ring (ring puck.)
$ u_9$	B1	872	21.62	0.45	854	849	852	s CHγ
ν_{10}		644	35.75	0.39	633	633	625	ΗϹΟϹΗγ
ν_{11}	B ₂	3285	3.35	28.53	3144	3147	3167	Pas CH
$ u_{12} $		1534	4.56	0.17	1494	1500	1541	🛙 as C=N + βas CH
ν_{13}		1239	1.47	5.11	1215	1217	1215	βas CH
ν_{14}		1083	45.00	1.10	1044	1081	1078	Pas COC + β CH
ν_{15}		951	0.00	0.38	935	935	925	CH + β ring (ring def.)β

Table 3. Theoretical vibrational frequencies (cm-1), IR intensity, Raman activities and the assignment of the ODA.

No.	Sym.	Freq. (cm ⁻¹)	IR intensity (Km mol ⁻¹)	Raman activity (A ^{° 4} amu ⁻¹)	Assignment
ν_1	Α	3681	54.26	45.26	$ u_{\rm as}{\sf NH}_2$
ν_2		3580	50.34	145.75	ν _s NH ₂
ν_3		3290	1.72	89.38	νCH
ν_4		1673	347.05	34.04	δ NH ₂ + ν_{as} N=CN
ν_5		1612	52.17	11.81	$\delta \text{ NH}_2 + \nu_s \text{ C=N}$
ν_{6}		1561	19.09	17.11	$v_{as} C=N + \delta NH_2$
ν_7		1428	47.49	1.51	$ρ NH_2 + ν_s COC + β CH$
ν_8		1253	2.94	10.97	βСН
ν_9		1134	1.29	8.91	ρ NH₂
v_{10}		1080	55.82	8.02	ν CO + β CH
v_{11}		1000	23.34	5.66	ρ NH ₂ + β CH ν NN +
ν_{12}		968	16.41	4.62	β CH + β ring (ring def.) + ρ NH ₂
v_{13}		957	6.91	1.06	β CH + β ring (ring def.) + ρ NH ₂
v_{14}		812	7.14	1.02	γ CH + γ COC
v_{15}		753	46.80	1.84	ω NH ₂ + ring puck. + γ CH
v_{16}		730	2.04	6.29	ω NH ₂ + γ OCN + γ CH
ν_{17}		650	22.62	0.27	γ CH + γ ring (ring puck.)
ν_{18}		583	219.63	0.57	ω NH2
$ u_{19} $		412	1.43	1.59	au NH ₂ + ring clock wise (eta ring)
v_{20}		312	35.85	0.23	τ NH ₂
ν_{21}		276	14.88	0.45	$ au$ NH ₂ + γ ring

Table 4. The theoretical vibrational frequencies (cm-1), with its assignment for the ODDA molecule.

No.	Sym.	Freq. (cm ⁻¹)	IR intensity (Km mol ⁻¹)	Raman activity (A ^{° 4} amu ⁻¹)	Assignment
ν_1	A'	3664	66.35	40.78	$\nu_{as}NH_2$
ν_2		3567	10.83	325.90	$\nu_{\rm s}{\rm NH_2}$
ν_3		1717	183.42	76.00	$\nu_{\rm s}$ C=N + δ NH ₂
ν_4		1628	23.35	1.75	δNH₂
ν_5		1455	5.51	1.10	ΟΝΗ β
ν_6		1156	0.22	23.47	ρ NH ₂ + ring def.
<i>v</i> ₇		1008	27.46	6.79	ρ NH₂ + ν NN
ν_8		968	15.17	5.92	$\rho NH_2 + \beta N=CO(ring def.)$
ν_9		760	94.73	0.77	ω NH ₂ + ring puck. (γ ring)
ν_{10}		676	27.37	12.18	$\omega \text{ NH}_2 + \nu_s \text{ COC}$
ν_{11}		637	193.87	0.23	ω NH ₂
ν_{12}		334	5.44	1.74	au NH ₂
ν_{13}		264	66.74	0.92	au NH ₂
v_{14}		208	10.80	0.27	au NH ₂ + γ COC
ν_{15}	Α''	3664	24.78	62.99	$\nu_{\rm as}{\rm NH_2}$
ν_{16}		3566	61.26	26.91	$\nu_{s} NH_{2}$
ν_{17}		1658	390.41	8.59	δ NH ₂ + β ring
ν_{18}		1602	81.27	0.54	δ NH ₂ + ν_{as} C=N
ν_{19}		1339	140.63	0.76	$ ho NH_2 + v_{as} COC (ring def.)$
ν_{20}		1145	4.50	3.70	ρ NH ₂
ν_{21}		981	41.28	0.06	ν _{as} COC (β ring)
ν_{22}		786	13.16	3.12	ω NH ₂ + β ring (ring def.)
ν_{23}		704	26.91	1.06	ω NH ₂ + γ ring (ring puck.)
v_{24}		629	179.66	0.43	ρ NH ₂ + γ ring
ν_{25}		483	8.91	0.45	ρ NH ₂ + ring clock wise (β ring)
v_{26}		357	12.38	0.22	γ NH + γ ring
v_{27}		222	0.05	0.29	au NH ₂

The frequencies of the following values 1104 and 1083 cm⁻¹ for the **OD** can be characterized as COC symmetric and asymmetric stretching mixing with the CH in-plane-bending vibration. Also the frequencies of 974 and 946 cm⁻¹ are belonged to the ring deformation (NN associated with COC stretching motions). In **ODA** molecule the v_{10} mode (1080 cm⁻¹) is analyzed as CO stretching plus CH in-plane-bending vibration. The two modes at 968, and 957 cm⁻¹ consists many motions, one of them is ring deformation, table 3. In **ODDA** molecule the normal following modes v_{10} , v_{19} , v_{21} , and v_{22} (at frequencies 676, 1339, 981, 786 cm⁻¹ respectively) are assigned as COC stretching vibration combined with many other different motions, table 4. The COC stretching vibration v_6 , v_9 , v_{11} , v_{12} modes in **CODA** molecule are mixed with other various motions, table 5.

 Table 5. The theoretical vibrational frequencies, IR intensities and Raman activity with its assignment for the 21 normal modes of the CODA molecule.

No.	Sym.	Freq. (cm ⁻¹)	IR intensity (Km mol ⁻¹)	Raman activity (A ^{° 4} amu ⁻¹)	Assignment
ν_1	Α	3680	58.11	49.18	$ u_{as} NH_2 $
ν ₂		3578	61.91	164.96	ν _s NH ₂
ν_3		1677	352.72	45.68	δ NH ₂ + ν_{as} N=CN
ν_4		1614	37.28	13.15	$\delta NH_2 + \nu_s C=N$

1551 145.90 19.41	v_{as} C=N + δ NH ₂
1426 21.81 0.62	$ ho NH_2 + \nu_s COC$
1167 182.49 3.37	ν OC=N + ρ NH₂
1138 0.03 16.51	ρNH₂
1032 30.48 9.99 ρ	$NH_2 + \nu NN + \beta COC$
973 12.51 3.86	βring (β N=CO)
969 14.53 5.17 ρ	$NH_2 + \nu CO + \beta C=NN$
758 25.87 2.95 ω ι	$NH_2 + \beta$ ring (ring def.)
738 7.43 3.00 (ring	g puck = γ ring) + ω NH ₂
668 0.30 0.35 (ring	g puck $\equiv \gamma$ ring) + τ NH ₂
582 247.26 0.71	ω NH₂
490 2.07 6.30	ν CCl + β ring
459 2.23 2.39 τ NH ₂	+ ring clock wise (β ring)
347 19.29 0.41	$ au$ NH ₂ + γ ring
287 13.46 0.57	au NH ₂
244 13.95 2.30	ρ NH₂ + β CICO
182 1.58 0.20	ω NH₂ + γ CICO

NH₂ vibrations:

The frequency of 3681 cm⁻¹ is assigned as NH₂ asymmetric vibration, but the symmetric vibration is 3580 cm⁻¹ in **ODA** molecule. This results are approximately equal to the frequencies of the **CODA** molecule (3680, 3578 cm⁻¹), and higher than the values of the similar vibrations in **ODDA** molecule (3664, and 3567 cm⁻¹).

There are three pure NH₂ twisting vibrations ν_{12} , ν_{13} , ν_{27} appeared at 334, 264, and 222 cm⁻¹ respectively in **ODDA** molecule, table 4. In **ODA**, and **CODA** molecules there is only one pure NH₂ twisting vibrations occurred at 312, and 287 cm⁻¹ consequently, tables 3, and 5.

C-Cl vibrations:

The frequency 490 cm⁻¹ belong to the ring–halogen modes is related to C-Cl stretching and associated with in-plane ring bending motion, table 5. The C-Cl in-plane bending is combined with rocking NH_2 vibration evaluated at 244 cm⁻¹. But the C-Cl out-of-plane vibration mixing with NH_2 wagging motion occurs at 182 cm⁻¹.

Electronic absorption spectra

The calculations include the electronic absorption spectra (UV-Visible) for the studied compounds, such as highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies, the energy gaps ($\Delta E_g = HOMO - LUMO$), absorption wavelengths (λ max), and oscillator strengths (f) based on the optimized geometry in water, and gas phase with major contributions, table 6. The calculations involving the vertical excitation energies perform according to the Frank–Condon principle determine the maximum absorption peak (λ max) in an UV–Vis spectrum. There are no available data for all studied compounds except the **OD** molecule which was obtained by Kakitani using the improved self-consistent HMO theory [23]. Their values for λ max was 203 nm, and f = 0.173. It is well known that their method is less accurate than the DFT, but still the λ max value approximate to this work result, table 6.

In view of the absorption spectra calculations, when one H atom in **OD** molecule replaced by $-NH_2$ group revel a red shift in both λ max, (a) and (b), table 6. A longer red shift is noticed when two H atoms substituted by $-NH_2$ groups in **ODDA** molecule, while a blue shift occurred in **CODA**.

The first vertical excitation of **OD** molecule (in gas phase) predict that the electronic transition (a) appear at 211 nm with an oscillator strength f equal 0.0000. So it is forbidden to be measured experimentally.

At the second excitation (b), λ max = 181 nm with f = 0.0141, which can be obtained experimentally. The same behavior is seen in water.

compound.	Gas				Water			
compound		λ(nm)	E(eV)	E(eV) <i>f</i> (a.u.)		λ(nm) E(eV)		Major contribution
	а	210.09	5.9013	0.0000	199.06	6.2285	0.0000	H→L (70%)
OD	b	181.47	6.8321	0.0141	178.25	6.9555	0.1449	H-2→L (46%) H→L+2 (54%)
ODA	а	228.31	5.4305	0.0108	211.67	5.8573	0.0103	H→L (70%)
UDA	b	206.80	5.9954	0.1437	210.22	5.8977	0.1617	H→L+1(69%)
ODDA	а	263.20	4.7107	0.0046	240.34	5.1586	0.0004	H→L (70%)
UDDA	b	247.86	5.0023	0.0091	224.10	5.5325	0.0077	H→L+1 (70%)
CODA	а	229.77	5.3961	0.0092	218.09	5.6850	0.2390	H→L (81%) H→L+1 (19%)
CODA	b	214.39	5.7830	0.0429	215.12	5.7634	0.0055	H→L+1 (37%) H→L+2 (63%)

Table 6. The absorption wavelength, energies, and oscillator strengths of the OD, ODA, ODDA, and CODA compounds using the TD-DFT/ B3LYP/6-311++G(2d,2p) method.

The calculations of the **ODA** molecule (in gas phase, and water) predict intense electronic transitions at 228, and 212 nm with an oscillator strength of 0.0108, 0.0103 consequently. The more intense one appear at excitation (b) (207, 210 nm) with an oscillator strength (0.01437, 0.1617 respectively).

The two λ max of **ODDA** molecule in gas phase and water presented at (263, 240 nm) with *f* (0.0046, 0.0004 respectively), but the value of *f* decrease in water.

The high intensity of λ max for **CODA** molecule in water is 218 nm with large value of f = 0.2390.

Figure 2 demonstrate the distributions and the energy levels of the frontier orbitals (HOMO, LUMO). From this figure it can be seen that the HOMO in **OD** molecule is located over the ring atoms, but the LUMO orbital almost localized on the whole molecule.

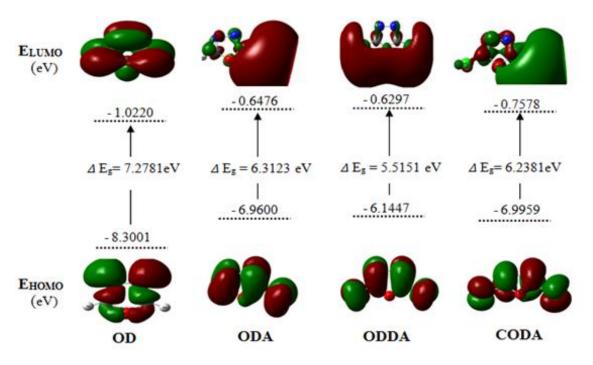


Figure 2. The atomic orbital compositions of the frontier molecular orbitals for the OD, ODA, ODDA, and CODA compounds, in gas phase.

8(1)

In **ODA**, and **ODDA** the HOMO is located over all molecule atoms, but the LUMO appeared only on the nitrogen atom which belongs to the amine group. So the HOMO-LUMO transition implies an electron density transfer from molecule atoms to the amine group (nitrogen atom).

In **CODA** molecule the HOMO is diffused almost on the whole molecule, while LUMO presented on the amine group only.

It is well known that the smaller the ΔE_g express the charge transfer interactions taking place within the molecule [22]. The HOMO and LUMO are the most important orbitals effecting molecular chemical stability [24], The energy gap between them specifies the molecule kinetic stability, chemical reactivity, optical polarizability, and chemical hardness–softness [25,26]. The calculated ΔE_g for all molecules under study increasing in the following order **ODDA < CODA < ODA < OD** (5.5151, 6.2381, 6.3123, 7.2781 eV respectively). The low values main these molecules are more reactive and less stable.

Molecular electrostatic potential (MEP)

Molecular electrostatic potential is useful calculations in screening the molecular structure along with its physiochemical property [27] .The MEP give an approach to the electrophile attract to a negative regions, where the partial electronic negative charge is dominant. The red color represents the maximum negative region which offers a superior site for electrophilic attack. But the blue color point out to the maximum positive region, which prefer in nucleophilic attack. The importance of MEP map displays the molecular size, shape, negative, positive and neutral electrostatic potential regions which characterize by color scaling.

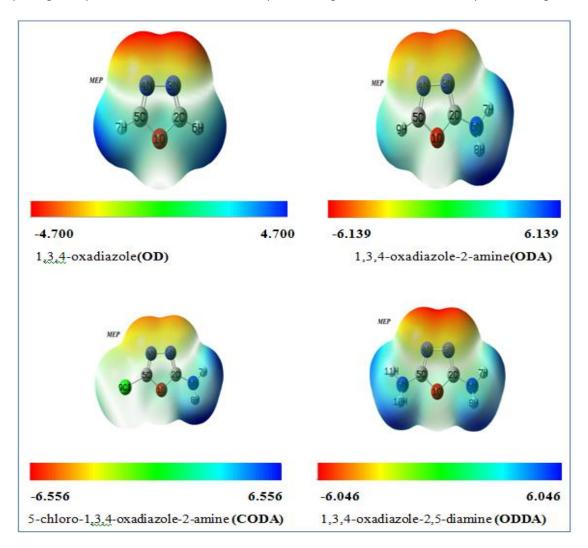


Figure 3. The molecular Electrostatic Potentials (MEP) for OD, ODA, ODDA, and CODA molecules (in gas phase).

Figure 3, presenting different colors map which relate to the different values of the electrostatic potential at the surface. The potential decreases in the order; red > orange > yellow > green > blue electron density surface. The color code of **OD** map are in the range between -4.700 (deepest red) and +4.700 (deepest blue), but the rest molecules ranging between the mean value of -6.247 to +6.247. The blue color indicates the strongest attraction and red the strongest repulsion. Regions of negative V(r) are usually related to the lone pair of electronegative atoms, as seen from the MEP map [28]. The MEP maps for all these molecules show a negative potential over the electronegative atoms (nitrogen ring atoms), and positive potential over the carbon and hydrogen atoms. From these results, it can be concluded that the carbon atoms indicate the strongest attraction and the nitrogen ring atoms associated with the strongest repulsion.

CONCLUSIONS

Theoretical study for the oxadiazole derivatives is performed in order to display the effect of substituted groups, on the ring structure and the electronic properties. The concluding remarks are:

The substitution of one or two electron- donating groups $(-NH_2)$ in 2or 5 positions on the oxadiazole ring destabilizes the HOMO and LUMO levels with a decrease in the energy gap resulting a red shift in the absorption spectrum.

The first (a), and second (b) absorption peaks of the electronic spectra and IR vibration frequencies for both C=N and C-H bonds are red-shifted in the presence of the $-NH_2$ group.

ACKNOWLEDGMENTS

The authors wish to thank the Department of Chemistry, College of Science, Al-Mustansiriya University, Baghdad, for allowing us to use their Gaussian program to accomplish the computer work.

REFERENCES

- [1] Sharma S, Sharma PK, Kumar N, Dudha R, Der Pharma Chemica 2010; 2(4): 253-263.
- [2] Nagaraj KC, Niranjan MS, Kiran S, Int J of Pharmacy and Pharma Scien 2011; 3(3): 9-16.
- [3] Sharma R, Kumar N, and Yaday R, J Chem 2015; 4(2): 1-27.
- [4] Musmade DS, Pattan SR, and Manjunath SY, IJPC 2015; 05(01): 11-20.
- [5] Kumar KA, Jayaroopa P, Kumar GV, Int.J.ChemTech Res 2012; 4(4): 1782-1791.
- [6] Sahu VK, Singh A K, Yadav D, Int J Chem Tech Res2011; 3(3): 1362-1372.
- [7] Zachariah SM, Ramkumar M, George N, and Ashif MS, RJPBCS 2015; 6(2): 205-219.
- [8] Nagaard L, Hansen RL, Nielsen JT, Rastrup-Andersen J, Sorensen GO, and Steinr PA, J Molec Struct 1972; 12: 59-69.
- [9] Demaison J, Jahn MK, Cocinero EJ, Lesarri A, Grabow JU, Guillemin JC, and Rudolph HD, J Phys Chem A 2013; 117: 2278–2284.
- [10] Christensen DH, Nielsen JT, and Nielsen OF, J Mol Spectrosc 1967; 24: 223-234.
- [11] EL-Azhary AA, spectrochim Acta A 1996; 52: 33-44.
- [12] Kwiatkowski JS, Leszczynski J, Teca I, J Mol Struct1997; 436–437 : 451–480.
- [13] Hegelund F, Wugt Larsen R, Aitken RA, Aitken KM, Palmer MH, J Mol Spectrosc 2007;246: 198–212.
- [14] Karimi M, Computational Chemistry 2016; 4: 11-16.
- [15] Romano E, Soria NAJ, Rudyk R, and Brandán SA, Molecular Simulation 2012; 38(7): 561–566.
- [16] Wang, GX, Shi CH, Gong XD, Xiao HM, J Mol Struct (THEOCHEM) 2008; 869: 98-104.
- [17] Kohn W, Sham LJ, Physics Review1965; 140: 1133–1138.
- [18] Becke AD, J Chem Phys1993; 98: 5648-5652.
- [19] Lee C, Yang W, Parr RG, Physical Review 1998; 37: 785–789.
- [20] Miehlich B, Savin A, Stoll A, Preuss H, Chem Phys Lett 1989; 157: 200–206.
- [21] Frisch MJ, Trucks GW, Schlegel HB et al, GAUSSIAN 09, revision A. 02, Gaussain Inc., Wallingford, CT, 2009.
- [22] Govindarajan M, Karabacak M, Udayakumar V, Periandy S, Spectrochim Acta Part A 2012; 88: 37–48.
- [23] Kakitani T, and Kakitani H, Theoret. Chin. Acta (Berl.) 1977; 46: 259-275.

- [24] Gunasekaran S, Balaji RA, Kumaresan S, Anand G, and Srinivasan S, Can J Anal Sci Spectrosc 2008; 53: 149-160.
- [25] Asiri AM, Karabacak M, Kurt M, Alamry KA, Spectrochim Acta Part A 2011; 82: 444–455.
- [26] Kosar B, Albayrak C, Spectro chim Acta A 2011; 78: 160–167.
- [27] Murray JS and Sen K. Molecular Electrostatic Potentials. Elsevier, Amsterdam, 1996. 69-71.
- [28] Alkorta I, Perez JJ, Int J Quant Chem 1996; 57: 123-135.